--- title: "GRShiny" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{GRShiny} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( eval = T, collapse = TRUE, out.width = "50%", fig.width = 7, comment = "#>" ) ``` ```{r setup} library(GRShiny) ``` [![CRAN status](https://www.r-pkg.org/badges/version/GRShiny)](https://CRAN.R-project.org/package=GRShiny) ## GRM data simulation ### Item parameters for graded response model ```{r} item_pars <- genIRTpar(nitem = 10, ncat = 3, nfac = 1) ``` ### Individual true latent traits ```{r} true_theta <- genTheta(nsample = 500, nfac = 1) ``` ### GRM data ```{r} grm_dt <- genData(eta = true_theta, ipar = item_pars) ``` ## GRM data simulation ### Generate lavaan syntax ```{r} lav_syn <- genLavSyn(dat = grm_dt, nfac = 1) ``` ### Conduct GRM with two different estimators ```{r} grm.fit <- runGRM(dat = grm_dt, lav.syntax = lav_syn, estimator = "WL") ``` ## Results ### parameter estimates ```{r} extract_est(grm.fit) ``` ### IRT plots ```{r} ICCplot(grm.fit, 1) ESplot(grm.fit , 1) infoPlot(grm.fit, 1) FSplot(grm.fit) ``` ## Launch app ```{r eval = F} startGRshiny() ```