---
title: "GRShiny"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{GRShiny}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(
eval = T,
collapse = TRUE,
out.width = "50%",
fig.width = 7,
comment = "#>"
)
```
```{r setup}
library(GRShiny)
```
[](https://CRAN.R-project.org/package=GRShiny)
## GRM data simulation
### Item parameters for graded response model
```{r}
item_pars <- genIRTpar(nitem = 10, ncat = 3, nfac = 1)
```
### Individual true latent traits
```{r}
true_theta <- genTheta(nsample = 500, nfac = 1)
```
### GRM data
```{r}
grm_dt <- genData(eta = true_theta, ipar = item_pars)
```
## GRM data simulation
### Generate lavaan syntax
```{r}
lav_syn <- genLavSyn(dat = grm_dt, nfac = 1)
```
### Conduct GRM with two different estimators
```{r}
grm.fit <- runGRM(dat = grm_dt, lav.syntax = lav_syn, estimator = "WL")
```
## Results
### parameter estimates
```{r}
extract_est(grm.fit)
```
### IRT plots
```{r}
ICCplot(grm.fit, 1)
ESplot(grm.fit , 1)
infoPlot(grm.fit, 1)
FSplot(grm.fit)
```
## Launch app
```{r eval = F}
startGRshiny()
```